Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials.

نویسندگان

  • S Y Zhang
  • D Robertson
  • G Yates
  • A Everett
چکیده

Intracochlear perfusion and gross potential recording of sound-evoked neural and hair cell responses were used to study the site of action of the L-type Ca(2+) channel blocker nimodipine in the guinea pig inner ear. In agreement with previous work nimodipine (1-10 microM) caused changes in both the compound auditory nerve action potential (CAP) and the DC component of the hair cell receptor potential (summating potential, or SP) in normal cochleae. For 20-kHz stimulation, the effect of nimodipine on the CAP threshold was markedly greater than the effect on the threshold of the negative SP. This latter result was consistent with a dominant action of nimodipine at the final output stage of cochlear transduction: either the release of transmitter from inner hair cells (IHCs) or the postsynaptic spike generation process. In animals in which the outer hair cells (OHCs) had been destroyed by prior administration of kanamycin, nimodipine still caused a large change in the 20-kHz CAP threshold, but even less change was observed in the negative SP threshold than in normal cochleae. When any neural contamination of the SP recording in kanamycin-treated animals was removed by prior intracochlear perfusion with TTX, nimodipine caused no significant change in SP threshold. Some features of the data also suggest a separate involvement of nimodipine-sensitive channels in OHC function. Perfusion of the cochlea with solutions containing Ni(2+) (100 microM) caused no measurable change in either CAP or SP. These results are consistent with, but do not prove, the notion that L-type channels are directly involved in controlling transmitter release from the IHCs and that T-type Ca(2+) channels are not involved at any stage of cochlear transduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of L-Type Ca Channels in Transmitter Release From Mammalian Inner Hair Cells. II. Single-Neuron Activity

Robertson, Donald and Bardia Paki. Role of L-type Ca channels in transmitter release from mammalian inner hair cells. II. Single-neuron activity. J Neurophysiol 87: 2734–2740, 2002; 10.1152/jn.00327.2001. Previously reported changes in the gross sound-evoked cochlear potentials after intracochlear perfusion of nimodipine suggest that dihydropyridine-sensitive Ca channels (L-type) control the so...

متن کامل

Role of L-Type Ca Channels in Transmitter Release From Mammalian Inner Hair Cells I. Gross Sound-Evoked Potentials

Zhang, Si Yi, Donald Robertson, Graeme Yates, and Alan Everett. Role of L-type Ca channels in transmitter release from mammalian inner hair cells. I. Gross sound-evoked potentials. J. Neurophysiol. 82: 3307–3315, 1999. Intracochlear perfusion and gross potential recording of sound-evoked neural and hair cell responses were used to study the site of action of the L-type Ca channel blocker nimodi...

متن کامل

Role of L-type Ca2+ channels in transmitter release from mammalian inner hair cells. II. Single-neuron activity.

Previously reported changes in the gross sound-evoked cochlear potentials after intracochlear perfusion of nimodipine suggest that dihydropyridine-sensitive Ca2+ channels (L-type) control the sound-evoked release of transmitter from the inner hair cells of the mammalian cochlea. In the present study, we combined recording of the action potentials of single primary auditory afferent neurons with...

متن کامل

Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse.

In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic alpha9alpha10 receptor coupled to the activation of SK2 Ca(2+)-activated K(+) channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter...

متن کامل

Elementary properties of Ca2+ channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses

Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 82 6  شماره 

صفحات  -

تاریخ انتشار 1999